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ABSTRACT

The reduction of test time in low pressure shock tubes, due

to a laminar wall boundary layer, has been analytically in-

vestigated. In previous studies by Roshko and Hooker the

flow was considered in a contact surface fixed co-ordinate

system. In the present study it was assumed that the shock

moves with uniform velocity, and the flow was investigated

in a shock fixed co-ordinate system. Unlike the previous

studies, the variation of free stream conditions between the

shock and contact surface was taken into account. It was

found that P, a parameter defined by Roshko, is considerably

larger than the estimates made byRoshko and Hooker except

for very strong shocks. Since test time is proportional to

V 2 , previous estimates of test time are too large, particu-

larly for weak shocks. The present estimates for P appear

to agree with existing experimental data to within about 10

percent for shock Mach numbers greater than 5. In other

respects, the basic theory is in general agreement with the

previous results of Roshko.
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I. INTRODUCTION

In an ideal shock tube (i. e. , neglecting wall and real gas effects), the shock

and the contact surface both move with a constant velocity and the flow between

them is uniform (Fig. 1). In an actual shock tube flow, however, the presence

of a wall boundary layer causes the shock to decelerate, the contact surface

to accelerate, and the flow to be nonuniform (e. g. , Ref. 1). Analytical and

experimental studies of the nonuniformities in shock tube flows have been

presented in References I through 10 (as well as by others).

The analytical theory presented in References 5 and 6 is applicable when the

wall boundary layer introduces only small perturbations into the ideal flow.

In these references, it was shown that the wall boundary layer between the

shock and the contact surface acts as an aerodynamic sink, removing mass

from the region between the shock and the contact surface. This mass removal

causes the shock to decelerate and the contact surface to accelerate, in agree-

ment with the experimental observations of Reference 1.

As the length-to-diameter ratio of a shock tube is increased and as the initial

pressure in the low pressure section is reduced, the wall boundary layer

effects become more pronounced. (The study of dissociation and ionization in
7.

shock tubes has stimulated the use of low initial pressures. ) Duff, in a study

of the flow about 12 feet from the diaphragm in a 1-1/8 in. diameter shock tube

with initial pressures of the order of 1 mm Hg, found the flow to be strikingly

different from that in a conventional shock tube. In a conventional tube, the

separation between the shock and the contact surface (and therefore the test

time) increases with distance from the diaphragm. However, in a low pressure

shock tube, Duff observed that the separation reaches a limiting value and

remains constant with distance thereafter. When this limiting condition is

reached, the shock and the contact surface both move with equal and constant

velocity. This phenomenon must be taken into account when estimating

test time in low density shock tubes.
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Fig. 1. Shock Tube Flow in Laboratory Coordinates



Duff correctly explained the limiting flow, where shock and contact surface

move with equal velocity, as one wherein the flow passing through the shock

equals the flow which moves past the contact surface due to the wall boundary

layer. He referred to the contact surface as a "leaky piston." This effect

was later studied experimentally and analytically by Roshko. 8 In the analytical

portion of Reference 8, Roshko considered the flow in a co-ordinate system in

which the contact surface was stationary. The separation distance between

the shock and contact surface at any instant was found from a mass balance

that equated the mass flow through the shock to the sum of the boundary layer

mass flow moving past the contact surface and the rate of accumulation of mass

between the shock and contact surface. (Anderson9 had used a similar approach.)

Roshko used the boundary layer theory presented in References 11 and 12

(which applies for the boundary layer behind a shock moving with uniform

velocity). He also developed an approximate boundary layer theory to account

for real gas effects. (The latter are treated more accurately in Refs. 13

and 16. ) Experimental measurements of test time for a variety of initial

pressures were obtained by Roshko, which confirmed the basic theory.

10
Hooker noted an erroneous velocity transformation in Reference 8 and also

noted that Roshko had left out a term in the mass balance equation, namely, the

accumulation of mass between the shock and contact surface due to nonunifornm

density in the boundary layer. He proceeded to correct Roshko's theory for

these effects and claimed a somewhat improved correlation between theory and

experiment. Howcver, the improvement was not dramatic.

The analytical results of Roshko and Hooker describe the basic features of the

flow in a low density shock tube and are widely used to estimate test time.

However, the flow model used in both papers (i. e. , a co-ordinate system in

which the contact surface is fixed) contains several inherent contradictions. For

example, both authors solve for the nonuniform shock velocity relative to the

contact surface but assume, for one term in the mass balance equation, that the

shock velocity is constant. The nonuniformity of the flow between the shock and

the contact surface is not taken into account since both authors use a boundary

-3-



layer theory based on uniform flow between the shock and the contact surface.

They recognized that the latter assumption becomes correct only in the case of

very strong shocks but made no attempt to modify the theory for the

"not-so-strong" shock despite the fact that much of their experimental data were

obtained at moderate Mach numbers.

In the present paper, the problem of test time in a low density shock tube is

investigated by considering a flow model wherein the shock moves with uniform

velocity. The co-ordinate system is one in which the shock is stationary, and

the wall moves. The present model is self-consistent. A boundary layer

theory is developed to take into account the nonuniform flow between the shock

and the contact surface. The solution applies to shocks of moderate strength,

as well as to strong shocks. Previous experimental data are re-examined in

the light of the present theory.

-4-



II. STEADY STATE SOLUTION

The experimental results presented in References 7, 8, and 10 indicate that

the shocked gas in a low density shock tube ultimately reaches a steady state

condition where both the shock and the contact surface move with equal and

constant velocity. The flow between the shock and the contact surface is

then steady when viewed in a co-ordinate system in which the shock and the

contact surface are stationary. In this co-ordinate system the wall moves

withvelocity uw (which equals the shock velocity Us in the laboratory

system). This steady flow is investigated herein with the primary object

of determining the separation distance between the shock and the contact

surface. The problem of unsteady flow, where the shock and the contact

surface have different velocities, is treated in Section III.

Steady flow is illustrated in Fig. 2. The shock is located at I = 0, and the

free stream portion of the contact surface at I = I m' The flow upstream of

the shock is denoted by subscript co and moves with velocity uw, as does

the wall. Free stream conditions between the shock and the contact surface

are denoted by subscript e. Free strearr conditions directly downstream of

the shock have the additional subscript o. The percentage of mass flow in

the boundary layer increases with I such that all the mass flow is in the

boundary layer at I and the free stream is stationary at that location.

Roshko 8 obtained an estimate for I in the following manner. The flowm
rate through the shock, rin, equals

rhs (peue A (1a)

where A is the cross-sectional area of the tube. Roshko assumed that the

boundary layer was thin and characterized the flow in the boundary layer at

the contact surface, rh c0 by

-5-
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ric = Lpw, o(Uw - Ue, o )R (lb)

where L is the perimeter of the tube; 6 R is a characteristic boundary layer

thickness at I m; and pw, 0 and uw - ue, o are characteristic boundary layer

densities and velocities, respectively. The boundary layer thickness was

further characterized by

6 R= U W,o-0 m (IlC)
W, e,•o

where P is a constant that must be found from an exact solution of the bound-

ary layer development in the tube. Equating Eqs. (la) and (lb), since the

flow is steady, yields the following expression for I m:

2g/p /2 u u

S d- (e,o e, o e, o (2)
m 162 \Pw,o/ uw - U eo Vwo(

where d = 4A/L is the hydraulic diameter. Assarhe that the temperature

upstream of the shock is at a standard condition so that T 00 = Tst, a 0 = ast,

and 1Lco = •st* Also, assume that the wall remains at its initial temperature

so that Tw = Tst. From continuity, p oUw = (Pe) do. Equation (2) can then

be put in the form

Pst Im I PCX) WM (3)
Poo d2  16p2 Pe, o W - 1( 1 L 1st

where W = uw/ue,o = Pe, o/poo, Ms -u w/aoof and pst is a standard pressure

(usually an atmosphere). The right hand side of Eq. (3) depends primarily

on Ms. Hence, for a given M., the separation distance I m is proportional
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2
to the product ci p . This can result in very short test times for shock

tubes with low initial pressure.

Equation (3) does not yield numerical results for I unless an accurate

estimate of P is available. Estimates of P have been presented in References 8,

10. ind 14, Th, prinmary pirnQt ,f ,tb.. preg e n, i tp 1 r o-e t1,p

estimates, particularly for flows with moderate M s . Thib is done by taking,S

Eq. (2) as the defining relation for

() ( d e C 0 (4)
- 1 6 1 m W - 1 V ,

I M (`WeUo IW, 0

and finding I as accurately as possible from a consideration of the bound-

ary layer development in the flow illustrated in Fig. 2. A first estimate is

made below by considering the boundary layer to develop in a unifoLcn'• external

stream. An improved estimate is then made by employing the concept of

local similarity.

A. UNIFORM EXTERNAL FREE STREAM APPROXIMATION

Boundary layer development for the case of an external free stream that does

not vary with I is illustrated in Fig. 3 and is discussed in the Appendix. Let

I correspond to the value of I at which the excess mass flow in the boundaryin

layer equals the mass flow entering through the shock. This gives

A(peuedo = L(p eu )o (-6':) where 6", is the boundary layer displacement

thickness at I m. Combining the latter expression with Eqs. (4) and (A-4)

(Appendix) yields

o I [(f co + 1 = 0 Go (5a)

The subscript o has been added to P to indicate that this value is based

on a bounday layer with a uniform external stream.

-8-
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Numerical values of P30 have been computed assuming an ideal gas and

pL = constant in the boundary layer (Appendix). These are listed in Table 1

for Prandtl number (a) = 0. 72 and 1; y = 7/5 and 5/3; and for various shock

strengths.

A solution for the boundary layer behind a strong shock moving with uniform

velocity into air at an initial pressure of 0. 001 atmospheres and

T w= T 5220 R has been presented in Reference 13. (Some results at 0. 01

atmospheres were also obtained.) This is a "real gas" solution in the sense

that equilibrium gas charts were used to obtain the flow across the shock and

in the boundary layer. The Sutherland relationship was used to evaluate the

variation of pL in the boundary layer. Some of the boundary layer results

are given in Table 2. The corresponding values of P 0 are included in this

Table.

It is expected that these values of Po will overestimate I particularly for

shock Mach numbers that are not large. This is due to the fact that the
relative velocity between the wall and the free stream increases from

U - Ue,o at I = 0 to uw at I m (compare Figs. 2 and 3). Hence the excess

mass flow in the boundary layer will be greater at a given I than that obtained

from the above model (which assumes the relative velocity to remain constant

at uw - u e, ). This will result in smaller Im and larger P than obtained

from Eq. (5a). However, for very strong shocks, where u e is small

relative to uw, Eq. (5a) should give accurate results.

In Reference 8, Roshko used two different expressions to evaluate P. The
first expression arose from a velocity transformation error (pointed out by

Hooker) and is the same as Eq. (Sa). His results for ar = 1, y = 7/5 (in Table I
of Ref. 8) are in agreement with Table 1 herein. He also used the expression

=R - - [(f 10 n)- (5b)
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which is the basis for the results he presents in his Tables II to IV. Since

Ioo/(f - n) O is positive, PR is somewhat smaller than Po and therefore

leads to greater error when computing I m. Equation (5b) is the expression

that arises naturally from the contact surface fixed co-ordinate system

used in Reference 8 and is presumably the expression Roshko meant to employ

throughout his paper. In References 10 and 14, Eq. (5b) was therefore used

to evaluate P. This is discussed further in Section IV.

B. LOCAL SIMILARITY APPROXIMATION

In the present section, the streamwise variation of free stream properties

due to the increase in boundary layer mass flow with I is taken into account.

The development of the boundary layer and the variation in free stream

properties are treated simultaneously. The boundary layer growth is found

by assuming that at each station it is similar to a corresponding boundary

layer developing in a uniform free stream behind a shock moving with uniform

velocity (i. e. , local similarity).

Since the flow is steady (Fig. 2), the net mass flow through the shock equals

the net mass flow at any station 1. Thus

A(puee)o APeUe + Lf(Pu -Pu)dy (6)

In Eq. (6), it is assumed that the boundary layer thickness is small compared

with d; thus the integrand is nonzero only in the region close to the wall.

Define

Peue
- d (peue)o (6*) (7a)

e-I-



where 6* is the local boundary layer thickness

6* f l - dy (7b)PeUe

Note that 8 is the ratio of the excess mass flow through the boundary layer

at 1, to the mass flow through the shock. Thus T varies from 0 at I = 0

to I at I =I m. Equations (6) and (7) then give

1 PeUe) 
(8)-(PeUe)o

which relates the free stream conditions to the local boundary layer displace-

ment thickness.

The concept of local similarity is now introduced. It is assumed that the

boundary layer profile at each I corresponds to that for a boundary layer

associated with a uniform free stream (equal to the local free stream) and

a wall velocity uw. The origin of this boundary layer is at I i. which is

initially an unknown function of 1. (See Fig. 4.) The origin Ii is chosen

such that the excess flow in the boundary layer at each I has the correct

local value. It is also assumed that the boundary layer growth at each

section is the same as that for the corresponding uniform free stream

boundary layer.

The local displacement thickness is then (Eq. A-4)

-6* = w /v( -+I)V

P ue OD 0eLe7
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Fig. 4. Boundary Layer Development With Uniform Free
Stream, Wall Velocity uw, and Origin at I.
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where (f - -n) and 1 are functions of the local free stream and wall

conditions (Appendix). From Eq. (7a), 6 becomes

T • H e (10a)

where

['Id Vwo I (10b)S-- 2 o Ue, o

S: z vw,_ _0o. (lOc)" [± Pr )o Ue, o

H V- [(f - 0)0 + IO] (lOd)

° V "u ::

V U e/ue, o (1Oe)

The nondimensional variable 4 now replaces 1. In deriving Eq. (10a) from

Eqs. (7a) and (9), it was assumed that Tw = TW, 0 and •w = •w, o"

The problem now is to solve Eqs. (8) and (10a) simultaneously to find 6 as

a function of t. The value of • at 6 = 1 will then define Im and P3. First,

ti will be eliminated. Since 6 is a function of ý, a plot of 6 versus g can

be made, as indicated by the solid line in Fig. 5. The dashed line in Fig. 5

represents the variation of 6 with t for a boundary layer growing under a

uniform free stream corresponding to the free stream condition H at somee

station t. The origin of this boundary layer, gi, is such that 6 has the

correct value at 4. The boundary layer is assumed to grow at g at the same

-14-
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rate as the corresponding uniform free stream boundary layer (dashed line).

The value of T at some point 4 +At is then

T + &76 fi/6 t) .- •i He (l 1)

However, the boundary layer at + At may be viewed as corresponding to a

boundary layer originating at ti + Ati and developing under a uniform free

stream corresponding to the free stream at t + At. The latter free stream

is characterized by the value He + AH . The resulting boundary layer is

denoted by the dash-dot curve in Fig. 5. The choice of Ati is such that the

excess mass flow in the boundary layer T +AT at t + At is the same as for

the boundary layer originating at ti. Thus

T+ T (• +'") - (i +T Ai) (He +&H e) (12)

Equating Eqs. (11) and (12) and neglecting higher order terms gives

1 •i _ He
1 Ati &H e(13)

2 4i He

which relates &gi and AHe.

The total differential of Eq. (10a) is

6- i + e (14)W 2 - t i H e

In view of Eq. (13) this becomes

A6- I -t (15)

-16-



But, from Eq. (10a), / - •i T2 /H 2 . Hence, Eq. (15) becomes
2 e

6-6/He = At/2, or in integral form

2 -- (16)

JH2

This expression can be integrated to find 6 as a function of 6. The value

of g at 6 = 1 is denoted gm and defines I m. In particular, from Eqs. (4)

and (10b),

W -1)m - 32 or P1  (17)

The subscript 2 is used when gm is obtained from a numerical integration

of Eq. (16). The subscript I is used when gm is obtained from an approxi-

mate integration, as will be discussed later.

In order to integrate Eq. (16) it is necessary to express He as a function of

6. A procedure for doing this is outlined by Eqs. (A-13) through (A-16) in

the Appendix. These equations apply for an ideal gas where a- = 1 and

p4 = constant across the boundary layer. A numerical integration of Eq. (16)

is required. This has been done for -y = 7/5, y = 5/3, and values of W from

1. 100 through 6. The results for P2 are included in Table 1. These will be

discussed later.

Approximate Analytical Integration of Eq. (16)

Equation (16) rquires a numerical integratior, and only the case of an ideal

gas where a- = 1 and pýL = constant has been evaluated. In the present

section, an approximate analytical integration of Eq. (16) is obtained which

is suggested by the solution for strong shocks. It will be shown that this

approximate integration gives accurate results for all M., except Ms near 1.

-17-



For M 2  << I (i. e. , for strong shocks), the state properties of the fluid in
e, 0the free stream between 0 0 and M = can be assumed to remain constant.

That is, [pe/Pe, o] = pe/pe, os I + O(M e,o)2. Equations (8) and (l0d) become

T = 1 - V (18a)

He = 4-V [(f - j) 0 + \ot] (18b)

We now assume that 1 + I10/(f - n)CO remains fairly constant for a given flow

and may be taken equal to its value at t = 0. (Note from Tables 2 and A-I

that ICo/(f - ?)0o is small for strong shocks. However, I10/(f - n) 0 decreases

with V (Eq. A-12) so that the present approximation tends to overestimate G.)

Equation (18b) now becomes

(f" -fa
H = -V ) G (19a)

W-V q1 + 1.022W G (19b)
W 4 ,,V + 1. 022 W 0

where the substitution for 4-V (f -n) O/(f -"00 0 in going from Eq. (19a) to

Eq. (19b) was found from Eqs. (A-8a) and (A-IOa). In effect, Eq. (19b)

assumes that the change in He is due primarily to changes in boundary layer

velocity profile. Substitution of Eqs. (18a) and (19b) into Eq. (16) yields

I (1 - V)(l + DV) (20a)
(I - EV)1

-18-



t
where

B = W I + 1.022WG2 (20b)
2. 044 (W - 1)2 b

D = 1/1. 022 W (ZOc)

E = 1/W (Z0d)

Equation (20a) can be integrated and gives, for V = 0,

1 1 [DE-E-2D ln(1 - E) - E -2D] (21a)

3+D+2E [I + 0(1/W)2  (21b)

These equations become, in terms of W and Got
o

6.044 (W- - 1)' - ( In(~ W1 (22a)G2 1 + 1. 022W 3. 022 -I

0

~1f -1 2  2
W 1+0(1/W )H (22b)

In deriving Eq. (22b), a term 0. 015/W was neglected compared with 1.

Equations (22) can be uscd, with Eq. (17), to find p. The resulting values

of P are given the subs,:ript 1 to indicate that they are obtained from the

approximate integration of Eq. (16). Values of P1 obtained from Eqs. (22),

are included in Tables 1 and 2 and will also be discussed later.

- 19-



The parameter P1 has a simple relation to Po when W2 >> 1. Thus, from

Eqs. (5), (17), and (22b)

pl = po3 [1 + 0(l/W2)] (23)

It is seen that P, is larger than Po but approaches Po as W -* o.

Simplified Expressions for P1

Equations (17) and (22) indicate that 1 depends only on W and G . The

value of W is found from normal shock relations and can be considered

known. The problem then is to find G . In References 12 and 13, analytic

interpolation formulas for G have been presented. These are used herein

to obtain simple analytic expressions for pl.

For an ideal gas with pp. constant in the boundary layer

G 1.135(W- 1) 1 + (24)0 •l + 1.022W 1 (f-1)o0 o

where the coefficient of the bracketed term is (f - n)OD, 0 (see Eq. A-8a).

Substituting into Eqs. (17) and (22b) and neglecting a term 0.011W compared

with I yields

P, = 1. 59 [1 + oo/(f - ,)a:)1o [ 1 +0( /W )] (252

The ratio [I OD/(f - I) 10 10 has been evaluated for T = I in the Appendix.

Substituting Eq. (A-9b) into Eq. (25) gives

=1.59 1+0.562-W + 2.057 1+(W 2 ) (26a)

-20-



This agrees with the values of PI in Table 1 for a- l and Y 7/5 and 5/3

to within 3 percent for W > 2. A similar expression can be derived to

correlate the " = 0.72 data in Table 1. If the constants in the expression

for [I O/(f - 7)oo ]0 are adjusted so that P1 has the correct value at W = 6,

S= 7/5 and W = 4, •y 5/3, the following expression is obtained for 0- 0. 72

1. 59[1 + 0. 802 W(1 +2. 24±) (26b)

This agrees with the results in Table 1 to within 2 percent for W > 2.

The effect of variable ppt in the boundary layer has been treated in Reference 13

for the case of air. It was f.ound that G is related to the value of G found
0 0

from a constant pý± solution by

Go = (Ce, o)0. 3 7 (Go)pýL=constant (27)

where Ce, o = (pee/pwi w) o. The exponent 0. 37 correlated the numerical

boundary layer solution for 4 <Ms< 14, poo = 0. 001, 0.01 atmospheres, and

T o= Tw = 522 R (in Ref. 13) and should be valid for air in a low pressure
shock tube. Equation (Z7) should also give reliable estimates for the effect of

variable pp. for gases other than air.1 This leads to the following expression

P1 - (Ce, o)o 037 (P) pp=constant (27)

0. 37
t~rweak shocks, Ce, o is nearly one and the correction for variable pp.

is small. For strong 'shocks G0 depends primarily on (f - ilO which is
obtained from an integration o the momentum equation (Cf") +If?," = 0
where C =Pp./Ppww. The quantity C varies monatomnically from 1 at the
wall to Ce, o at the edge of the boundary layer. Its effect should depend
primarily on the value of Ce, o and should not be a strong function of the
nature of the gas.
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for obtaining P1 from values of P1 found from constant pt boundary layer

solutions. Equation (26b) then gives, for u- = 0. 72 and W > 2,

1. 59 C 0.37 [1 + 0. 82 W (I, 2..)] (28a)

where an ideal gas (constant y) solution for the shock is assumed (due to

the presence of Z). For strong shocks, where -y no longer equals the ideal

value, Z approximately equals W. Hence, for strong shocks, Z can be

replaced by W and Eq. (28a) becomes

S1. 037[ 1+082 W( 1 + 2.24)1 (28b)
•' e,o W- 2

Results from Eq. (28b) for air are listed in Table 2. These agree within

2 percent with the exact values of P1 (computed from Eqs. 17 and 22a)

for Ms_> 4. The agreement is w'ithin I percent for vs_> 8.

C. SUMMARY AND DISCUSSION OF RESULTS

Various estimates for P have been made. These will now be reviewed and

compared.

The parameter P0 was found by assuming the free stream to be uniform and

by finding Im such that the excess mass flow through the boundary layer

equalled the mass flow through the shock. This assumes that the relative

velocity between wall and free stream is uw - Ue, o. Near the contact

surface, the relative velocity is actually uw. Hence, Po is too small

(i.e., Im is overestimated). For weak shocks uw is nearly equal to ue, o

and the error is very large.

In order to obtain an improved estimate for P, the variation of free stream

conditions was taken into account and a local similarity boundary layer

solution was employed. A numerical integration was required and the

resulting values of P were denoted P2 " Values of P2 were obtained for an
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ideal gas with Y = 7/5 and 5/3, a- = 1, and pgu = a constant across the boundary

layer. The results are given in Table I and Fig. 6. As expected, A2 is

larger than Po. The difference is very marked near W = I since P0 behaves

like %rW - 1 while P. behaves like I/-W- 1 as W-. 1. The latter behavior

for f2 is required in order that I be finite as W - I (see Eq. 3). The
m

infinite value of P2 , at W = 1, could have been avoided if Roshko had taken

the characteristic velocity to be u" rather than uw - us,° in Eqs. (ib) and

(ic).

The numerical integration to obtain P2 is tedious and simplifications were

introduced to permit a closed form integration. The resulting values of P
were denoted Pl. Values of P1, for (r = 1, - = 5/3.and 7/5, and pIL constant

may be compared with the corresponding values of P. in Table I and Fig. 6.

It is seen that P, is somewhat larger than P2 for larger W and is smaller

than P. for W near 1. The two agree within 8 percent for y = 5/3 and

5 percent for y = 7/5, except near W = 1, where the local similarity solution

itself is least accurate. Since P1 is relatively simple to obtain, it will be

used henceforth instead of P. to evaluate the flow in a low density shock

tube.

Values of P1 for air, including real gas effects and variable p4, are given

in Table 2 and Fig. 7. The effect of variable pp. is to decrease P1 by ao0. 37
factor (Ce, ) . This effect is most pronounced for strong shocks and

causes P1 to decrease continuously with Ms. Figure 7 includes values of

PR (Eq. 5b), including real gas effects, as computed in References 8 and 14.

The agreement between -PR (from Ref. 8) and P1 near M = 10 is fortuitous,

being due to a rough approximation by Roshko for the effect of C e, o The

results of Reference 14, for PR, are based on an accurate boundary layer

solution. It is seen that PR underestimates P, and therefore considerably

overestimates I m [recall I "- 1 2] for the range of M in Fig. 7.

Values of P1 for argon are included in Fig. 7. These were obtained by

multiplying the values of P, in Table 1 ((r = 0.72, y 5/3) by (C.,o) 0.37.

The normal shock solution for argon was based on y = 5/3 and the results
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are therefore not extended beyond M. = 10 (where ionization effects become

important).

Roshko8 measured test time in a low density shock tube for 2.5 < M < 9 in

air and argon, He found that P = T3- gave a mean correlation of the experi-

mental data. However, since he computed P from Eqs. (5), he had no

rational explanation of why P should be so high. The present results (Fig. 7)

indicate that p = %f3 is a reasonable mean value for his tests. The marked

decrease of P with Ms indicates that smaller Mach number ranges should

be used when correlating the experimental data, particularly for moderate

M.s

The present results for P1 have been used in Eq. (3) to obtain the variation

of I mpst/d2 pO with Ms for air and argon. The results are given in Fig. 8.

The standard condition in Eq. (3) was taken to be Tst = 522 0 R and

Pst = 1 atmosphere, for which

(pa) =6.93X 106 ft-1 air

= 7.39X 106 ft"1 argon

Roshko used the values 6. 74 X 106 and 7.03 X 106 for air and argon,

respectively. These values correspond to a higher standard temperature1. 26o. 76
[Note that (pa/. )st ^ Tst- 2 6 for air, since ý T"* 7 The effect of

initial temperatures other than 522 0 R can be readily taken into account].

The results for air in Fig. 8 are based on values of PI obtained from

Fig. 7 for Ms-< 14 and on values obtained from Eq. (28b). Real gas

normal shock solutions were employed. The difference in the values of

I r for po = 0.5 cm and p o = 0.001 cm is due to the effect of initial

pressure on the shock solution. This difference is small and probably within

the accuracy of the present solution. The results for argon in Fig. 8 are

based on the values of P1 in Fig. 7 and an ideal gas normal shock solution

(y = 5/3).
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III. UNSTEADY SOLUTION

In the previous section, the asymptotic value of the separation distance

between the shock and contact surface was found. This defines the test time

in shock tubes that are sufficiently long to permit the asymptotic steady state

flow to be reached. The separation distance as a function of time is required

in order to estimate test times in shock tubes wherein the steady state solution

is not achieved. This problem is now discussed.

It is desired to find the separation distance as a function of time, t, assuming

that the shock and the contact surface are coincident at t = 0. This problem

is very difficult to solve, and it is necessary to set up an approximate nmodel

for the flow. Two limiting approaches seem tractable. The first is to assume

that the contact surface moves with uniform velocity and to attempt to compute

the nonuniform motion of the shock relative to the contact surface. At first

glance, References 8 and 10 appear to use this approach. 'However, in both

of these references it is assumed that the mass flow through the shock, rm of

is a constant and thus a uniform shock velocity is implicitly assumed. In

addition, the proper boundary layer theory to be used in the contact surface

fixed co-ordinate system is not clear. (In Refs. 8 and 10 attempts are made

to relate the boundary layer to that behind a constant velocity shock with a

uniform free stream downstream of the shock.) The second approach is to

assume that the shock moves with uniform velocity and to find the rate at

which the contact surface moves relative to the shock. This model can be

specified more precisely than the first one, is self-consistent, and leads

naturally to the asymptotic solution obtained in the previous section. The

latter model will be treated herein.

A. ST]YARATION BE'rWr, EN SHOCK AND CONTACT SURFACE

Consider flow in a co-ordinate system in which the shock is fixed and the

wall moves with velocity u . Assume that at time t = 0 the contact surface

coincides with the shock and that at some later time, t, the portion of the
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contact surface which is in the free stream is located at I (Fig. 9). Also

assume that the flow between the shock and the contact surface is steady.

For steady flow, the rate of mass flow through the shock equals the rate of

mass flow through a control surface at I. Thus

(Peu ) A = fpu dA

= PeUeA + peueL (-6*) (29)

where 6* is the displacement thickness at I. This continuity equation can

be reduced to

e= e- e (30)

which is the same as Eq. (8). If I is replaced by • (Eq. 10b), and local

similarity is assumed for the boundary layer, it again follows (see derivation

of Eq. 16) that

d = 26d'/H 2  (31)
e

We are now interested in obtaining I as a function of t. But di /dt = u e.
Thus t =If'dt /ue. Define X -u ot/1 , T S I/I It then follows

(from I/ Pm A/ and Eq. 31) that

U t x Wo6 d -/(VHe)
X e,o = W-- (32a)

I m jo 6do/H2

-3Z-
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T E e__ (32b)

The quantityxs in Eq. (32a) is the distance of the shock from the diaphragm,

x8 = uw t. Equations (32) give the separation distance I as a function of

t (or x s). The parameters X and T are the same as those introduced by Roshko.

The quantity T is the ratio of the separation distance I to the asymptotic

value I M, The quantity X is the time t divided by the time it would take an

ideal shock tube (no boundary layer) to achieve a separation distance I

The latter may also be viewed as the shock distance xs divided by the distance

required, in an ideal shock tube, to achieve a separation distance Iny Note

also that dT/dX= u e/u e,o. For an inviscid flow, X = T. The departure of X

from T is a measure of the wall boundary layer effect.

Equations (32) have been integrated for an ideal gas with a- = I and constant

p± across the boundary layer for y = 7/5 and 5/3. Equations (A-13)through

(A-16) were used. Plots of X versus T are given in Fig. 10. The results

for W = 1.25, y = 7/5, and for W = 1.25, y = 5/3, are sufficiently close that

they appear as a single curve in Fig. 10. Similarly, the results for W = 6,

S= 7/5, and W = 4, y = 5/3, appear as a single curve. The displacement

between these curves is small and intermediate values of W are therefore

not plotted.

A simpler relation between X and T, suggested by the solution for strong

shocks, can be found as follows. Write Eq. (29) as

Pu e P e u e L(-6*)

4e eo
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If variations in free stream density are neglected, the first term on the right

hand side can be written as ue/ue, = dT/dX. The second term on the right

hand side is the ratio of the excess mass flow through the boundary layer at

j to the mass flow through the boundary layer at t m. For strong shocks,

the external free stream remains fairly uniform and the excess mass flow in

the boundary layer grows approximately as %T so that the second term can be

approximated by VrO79l = 'T. Equation (33) then becomes
m

1 = T +%rT-(34)

This is the same equation as that derived by Roshko and the solution is

X
- n (1 - %7) + 4W (35)

Equation (35) is also plotted in Fig. 10 and is indistinguishable from the

previous results for W = 6, y = 7/5, and W = 4, y = 5/3. This shows that

the plot of X versus T is relatively insensitive to W and y and that Eq. (35)

gives an accurate representation except for W very near 1.

B. TEST TIME

In the previous calculation, the separation distance was obtained as a function

of t. A quantity that is perhaps oi greater interest is the test time (i. e. , the

difference in time between the arrival of the shock and the arrival of the

contact surface) at a fixed value of x. This quantity will now be discussed.

Designate the test time by T. For t-00n, T = M/uw. Define 7 -= u wi/ 0
which is the test time at x divided by the test time at x-oo. Since u - ue

w e
is the velocity of the contact surface relative to the shock tube wall, the test

time will nearly equal I/(u w-u e). Also, ue' > u > 0. It then follows that

W"W-I T>7 > T (36)
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At the start of the motion, F = WT/(W - 1), whereas after long times " = T.

If W in large, • = T throughout the entire motion.

The test time a at a particular station x is found analytically as follows.
a a

In the present model, the shock moves with uniform velocity uw. Let f a be

the separation distance when the shock is at xa, and let xb be the location of

the shock when the contact surface is at xa, From Fig. I I it is clear that

x /ub and Ta = tb - ta = b/uw. In nondimensional variables, the

latter expressions become

Xa = Xb - Tb/W (37a)

Ta = Tb (3 7b)

Equations (37) give corresponding values of X and T frona correspondinga afvalues of Xb and Tb (which are found from Eqs. (3 2 )or Fig. 10). Since

station a is arbitrary, the subscript a may be removed from Eqs. (37). Plots

of 7 versus Xare given in Fig. IZ for an ideal gas, where o = 1 and

pt = constant.

If Eq. (35) is used, the relation between X and " becomes

S-X- =2[f n (I - -F)+ -1]+TW(38)

Equation (38) is also plotted in Fig. 12.

It is seen from Fig. 12 that the variation of 7 with X is more sensitive to W

than is the variation of T with X (Fig. 10. ) Equation (38) gives a reliable

estimate for the variation of T with X except for W near 1.
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Since the variation of T with X is relatively insensitive to W (compared with

T versus X), it is preferable to attempt to correlate experimental data on the

basis of T versus X. The data should then correlate with the single curve

defined by Eq. (35) for all values of W except W near 1. Experimental obser-

vations of test time can be reduced to T as follows. If 7 is the nondimension-a
alized test time at Xa , Eq. (37) indicates that the corresponding values of T

and X are

x =X +I (39a)

T = i a(39b)a

This reduction procedure becomes more important as W decreases. A

similar procedure has been discussed in Reference 10.
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IV. COMPARISON WITH REFERENCES 8 AND 10

References 8 and 10 used a contact surface fixed co-ordinate system to study

the separation between the shock and the contact surface. The derivation of

their basic equations is outlined here. The assumptions which are required

to reduce the equations for the shock fixed model to those of References 8

and 10 are also noted and discussed.

The notation to be used in the contact fixed co-ordinate system is indicated

in Fig. 13. Subscripts 1 and 2 denote conditions upstream and downstream

of the shock, respectively. U8 is the velocity of the shock relative to the

wall and u2 is the velocity of the free stream in region 2 relative to the wall.

In both References 8 and 10 it is assumed that the free stream is uniform in

region 2 so that u2 is a constant and also equals the velocity of the contact

surface relative to the wall. Hence, the free stream velocity is zero in

region 2 in contact surface fixed co-ordinates. The above-notation is the

same as that used in References 8 and 10. In addition, the velocity in the

boundary layer, relative to the contact surface, will be denoted by !a (Fig. 13).

The mass balance between flow entering and leaving region 2 is found as

follows. The rate at which mass enters the shock at any instant is

rh I- U A = P2 WU a -u)A (40)

The rate at which mass leaves, at the plane of the contact surface, is

rhc = L. Up^ dy (41)

where pa is zero outside of the boundary layer. The rate of increase in mass

between the shock and contact surface, rii, can be found in the following
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manner. Consider the interval of time between t and t + dt. The separation

distance increases by an amount di. Assume that the mass between 0 and

at time t is the same as the mass between di and I + di at time t + dt (see

Fig. 13). The increased mass between the shock and contact surface is then

contained between stations 0 and di and equals

dm (fp dA) dl

[ pZA + L,-o 0(p - p2 ) dy] di (42)

This gives the following expression for the rate of increase of mass in

region 2:

(p-dt (43)
rha p 2P A + L fo 00(p - p2) dy] di 43

(Roshko used rh = P2 A di /dt and Hooker used the integral in the form
foyb p dy. Reference 14 corrected Hooker's integral. ) Continuity of mass,

M - rmc = ri, then gives

L u' 2 ) -y\ = d i Roshko (44a)

:f o- + - N1 Hooker (44b)

where the integrations are t$ken at the contact surface.
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Since the free stream was assumed uniform in region 2, the integrals in

Eq. (44) can be evaluated using the results of References 11 to 13 and are

independent of I and t. Hence Eqs. (44) can be integrated to find I as a

function of t. In integrating Eq. (44), both Roshko and Hooker assumed

that Us - u 2 is a constant. However, from Fig. 13, it is seen that

Us - u2 = dl /dt and therefore cannot be a constant for shock tube flows
when the wall boundary layer effects are important. Hence there is an

inconsistency in this model beyond the assumption of uniform flow in region 2.

The assumption that U5 - u 2 is constant is equivalent to assuming that the

mass flow rate through the shock is constant. This is precisely the basic

assumption made in the shock fixed model and it is not unexpected that the

two models give a similar variation of I with t.

Equations (44) can be put into shock fixed notation by letting Us - u2 = Ue, o'

S= u-Ue, and p2 = Pe, o. The result is

1 Ud qr " a) u dI = 0 Roshko (45a)
ea 0 e,o

,'F1 di Ldy
U o P p , o

Hooker (45b)

(Roshko used Pq/P2 = pu/Pe, - u as well as Pa/P2 = p(u - u o)/Pe,e0 e, o 2e,o eo

and the former is the transformation error previously noted in connection

with Eq. 5b. ) The limit di /dt = 0, in Eqs. (45), shows that the

asymptotic separation distance I is obtained from a value of p
m
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equal to 0R as defined in Eq. (Sb). When put in terms of X and T, Eq. (45a)

reduces to Eq. (34) and the integral is given by Eq. (35). However. in terms

of X and T, Eq. (45b) becomes

which can be integrated to give

S[I 1) oI+(47)

Equation (47) is Hooker's modification of Roshko's Eq. (35). The difference

between these equations is small, particularly for strong shocks.

Equations (45) can be compared with the corresponding equations which

arise in the shock fixed model. Equation (29) can be written

This canbe redu ed to Ee (5bytknPe 0- Pe n yt~ne eua

P u 0pu

-- (u 1) =0 (48)

This can be reduced to Eqs. (45) by taking pe = Pe and by taking u e equal
to either ue, 0 or de Idt, depending on the particular term involved. If

ue = u in the third term of Eq. (48), and if ue = df /dt in the forth term,

Eq. (48) reduces to Hooker's Eq. (45b). However, it is more consistent

to let ue = ue, o for both these terms. This would mean that the coefficient

(df /dt)/ue, 0 on the right hand side of Hooker's Eq. (45b) could be replaced
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by 1. If this substitution is made in Eq. (45b) then it would yield a value of

P defined by P0 (which is more accurate than PR) and a variation of T with X
as given by Roshko's Eq. (35). The latter was shown in Fig. 10 to be in good

agreement with the integral solution ofthe shock fixed model for all W except

W near 1.

Hence Hooker's relatively small correction (Eq. 47) to Roshko's result

(Eq. 35) for the variation of T with X does not appear warranted. Equation (35)
is sufficiently accurate, considering the basic limitations of the contact

surface fixed model. The major problem is that of accurately determining P.
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V. COMPARISON WITH EXPERIMENTAL DATA

Experimental observations of test time in low pressure shock tubes are

reported in References 7, 8, 10, and 15. The results of the first three of

these papers are summarized in Fig. 14. The results will be considered in

the light of the present study. In particular, the question of whether the use

of P, leads to improved correlations will be investigated.

The experimental results in Fig. 14 were reduced on the basis of f =

and T = . t The value of P = %3 was chosen by Roshko as a mean fit to

his experimental data. Recall that both X and T are multiplied by P 2 (since

Im V"). An increase in P will result in an increase in both X and T. In

regions where T has reached its asymptotic value (i. e. , is independent of X),
changes in P will raise of lower T, but the effect on X will be unimportant

with regard to correlation with the asymptotic portion of the theoretici iI

curve in Fig. 14. If P were correctly evaluated, the experimental data should

by asymptotic to T = 1. Hence, the asymptotic data can be used to evaluate

. .. In particular, /T-A where TA is the asymptotic value of T in Fig. 14

for the data in question.

The results of the above procedure are compared in Table 3 with values of P1
from Fig. 7. For air in the range Ms = 5 through 9, P1 is too small by about

10 percent. The results for argon cover three Mach number ranges and are

more complete. It is seen that P, is too small by about 35 percent for

Me = 1. 6, 20 percent for M. = 4, and 10 percent for M. = 5 through 9. These

figures are only approximate, due to uncertainty and scatter in the experimental

The quantity T was found from an experimental measurement of test time.
The procedure noted in Eqs. (39) should be used to reduce the data to obtain
a plot of T versus X. This would displace the points in Fig. 14 to the right.
This displacement is unimportant in the region where T is near its asymptotic
value, which is the region of primary concern here.
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C
data. However, the trend appears reasonable in view of the fact that the
procedures used to obtain P, and 32., in the present analysis, become more
accurate as M increases. Mixing and diffusion at the contact surface would
also tend to yield experimental values of P3 which are somewhat larger than Pl.
The magnitude of P1, and its variation with M., is in much better agreement
than would be obtained by usinig P R* The large values of P, as M.--1, indi-

cate that in the low Ms range the test time is much less than previous esti-
mates based on P R'

On the basis of the above data, it appears that the present estimates for P1
are correct to about 10 percent for M _> 5. Additional experimental data
are required to better define P. A narrow range of M must be used when'P
is evaluated experimentally in the low M range.

Table 3. Evaluation of P3 from Experimental Data in Fig. 14

Gas Ref. M TA P V33iT/F PI
s (Approx.) A (Fig. 7)

Argon 7 1.6 0.2 3.9 2.4

Argon 10 4 0.6 2.2 1.8

Argon 8 5-9 0.9 1.8 1.7 - 1.4

Air 8 5-9 1.3 1.5 1.6 - 1.2

-
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VI. ADDITIONAL CONSIDERATIONS

The present theory can be used to estimate the flow nonuniformity in low

pressure shock tubes. In addition, the asymptotic shock strength for given

initial shock tube conditions can be estimated. Since in the present theory a

laminar wall boundary layer is assumed, it is also of interest to discuss tran-

sition to a turbulent boundary layer. Finally, it has been assumed that the

boundary layer is thin compared with the tube diameter, and this assumption

requires verification. These topics will now be briefly considered.

A. FLOW NONUNIFORMITY

An estimate of the flow nonuniformity between the shock and the contact surface

can be obtained from Eq. (34), which, in dimensional variables, can be written

u = 1 4 (49)

e,o M

This gives the variation of ue with distance behind the shock. Isentropic flow

relations can then be used to find the variation with I of all other flow prop-

erties. In shock fixed co-ordinates, the flow downstream of the shock cor-

responds to subsonic flow in an expanding channel. The density, temperature,

and pressure increase with distance behind the shock. The net change in these

properties can be expressed in terms of the flow Mach number directly behind

the shock u e,o/a e,o and is small for strong shocks. The present discussion

neglects relaxation phenomena which may also contribute to variations in the

free stream properties.

B. COMPARISON OF IDEAL AND ACTUAL ASYMPTOTIC SHOCK STRENGTH

The problem here is to estimate the actual asymptotic shock strength that will

result from given initial conditions in a low pressure shock tube. Perfect gases

with constant specific heats are considered. Mere the conventional subscripts

I and 4 are used to indicate initial conditions in the driven and driver sections,

respectively.
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If wall boundary layer effects are neglected, the resulting ideal shock Mach

number M si is related to the initial pressure ratio P4/P and sound speed

ratio a4 /aI by

S MI -M 1 P (Z + 1)M - 1 (50a)

Z 1 -. laI s i I ('1

I,(Z4 p4 (P 4 Z I

In the derivation of Eq. (50a), it is assumed that the flow is uniform between

the shock and contact surface.

Duff7 has pointed out that the ideal shock tube equations can be modified to

account for the character of the asymptotic flow in a low pressure shock tube.

In particular, Duff neglects the boundary layer effect in the driver gas (valid

for strong shocks). He also assumes that the contact surface moves with the

same velocity as the shock and that the pressure. at the corltact surface equals

the stagnation pressure (relative to the shock) of the flow directly behind the

shock. The shock Mach number M that then results from given initial

conditions is found from 7 sA

Ms,A a 1 (Z1 + I)MA 2 4

9, MI p( I+I)/sZA+I7 74Ia 4 41

X + s,A+ ZI + zA l) +)/Z(Z4+)(
(Z 1 I- I)(Z + U)M s, (]

The quantity MsA may be termed the actual asymptotic shock strength.

Eq. (50b) differs in form from Eq. (4) in Reference 7, since Duff was primarily

interested in determining the initial pressure ratio p4 /pl required to achieve

a given shock strength MsA'
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When the shock tube diaphragm first bursts, the boundary layer effects are

small and the shock Mach number will tend to be Ms, 1 as given by Eq. (50a4

Hence, M . may also be viewed as the initial shock Mach number. (The

finite time required to rupture the diaphragm tends to alter this result some-

what). If the flow reaches its steady asymptotic limit, the shock Mach number

is given by Eq. (SOb). - These two Mach numbers can be readily compared for

large initial pressure ratios. In the latter case, Eqs. (50at and (50b) can be

equated to yield

Ms,A - I P)1/Z4+1(I- - +O(Pl/p 4) (51)
s,1 1

where Wi is the density ratio across the shock corresponding to Ms~. For

strong shocks, MsA is only slightly less than Ms.. The difference becomes

more pronounced for weaker initial shocks.

Roshko8 has deduced an expression similar to Eq. (51) from a simple physical

argument. Namely, for ideal flow,the shock velocity relative to the wall is

Usi= (W U e,o)i. For the asymptotic flow, the shock velocity approximately

equals the ideal contact surface velocity relative to the wall; Us, A = (Us - Ueo)i"
The latter expressions give Eq. (51).

C. TRANSITION

It has been assumed throughout that the wall boundary layer is laminar between

the shock and the contact surface. This assumption is generally valid for low

pressure shock tubes. It is of interest to compute the Reynolds number at the

contact surface for the asymptotic flow condition. If this is below the transition

Reynolds number, then the validity of the laminar flow assumption is established.
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In Reference 16, a transition Reynolds number defined by

(Re)t eo t (52)
e, o

has been proposed for correlating transition in shock tubes. Here, It is the

distance between the shock and the transition point. (The characteristic velocity

used to deduce Eq. (52) is the flow velocity relative to the wall and the charac-

teristic distance is the distance a particle moves in the free stream from the

instant it is set into motion to the instant it is at the transition point. ) Experi-

mental observations of (Re)t are summarized in References 16 and 17. For

weak shocks, (Re)t = 0(106). The value of (Re)t increases with Ms, particularly

for strong shocks where the low wall-to-free-stream temperature ratio tends to

stabilize the boundary layer. This stabilization seems to occur at about

Tw/Te,o r 0. 1, which corresponds to Ms ; 10 in air. The. data in Reference 17

indicates that for 1 <_ Ms a. 9, (Re)t appears to be in the range

0.5<< (Re)tX 10-6 <_4. For larger Ms the values of (Re)t tend to increase

markedly and values as high as 107 and 5 X 107 have been observed1 7 for M

around 10. An analytical study of the stabilizing effect of low T w/T e, has been

presented in Reference 18. The latter study is consistent with the experimental

data for very weak shocks, but indicates infinite stability for M> . 18 in air.

The Reynolds number at the contact surface, corresponding to a shock-contact

surface separation distance of Imp can be used to determine whether or not the

laminar boundary layer assumption is correct. This Reynolds number is

(Re) m= Ue,o[W - 1]21m/Ve,o assuming a uniform free stream, and can be put

in the form

P2t/(Re)Ia\ Im pt\(
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The right hand side depends primarily on Ms. For a given Ms, (Re)j varies

as (dpGo/Pst)2 " If d is increased to increase Im' then smaller values of p0
may be required in order to assure laminar flow. Eq. (53) has been evaluated,

employing the same data as used to obtain Figs. 7 and 8, and the results are

presented in Fig. 15.

The present results have been used to estimate (Re), for one series ofm

Roshko's tests in air. These tests were made in a tube with d = 1/6 feet,

5 < Ms < 9 and 0. 1 mm Hg < p < 5 mm Hg. Using An average value

(P st/P0) 2 (Re) m/d 2 = 2 X 10 W (from Fig. 15), it is found that
104 < (Re)j M< 2 X 107 . At the higher values of (Re)Im, transition to a tur-

bulent boundary layer might have occurred. This would reduce I m' and increase

the effective value of P, as compared with a completely laminar boundary layer.

D. BOUNDARY LAYER THICKNESS AT I m

Let 6 u represent the value of y at which (uw - u)/(uw - Ueo)= 0.99 and let

11u be the corresponding value of il. Hence, 6u is a measure of the boundary

layer thickness. Assuming that the flow behind the shock is uniform 6u is given

by (e.g., Ref. 13)

6 w\e V ,ju- () 1 (54)

The value of 6 at I can be used as an index to determine whether theu m

boundary layer thickness is small relative to the tube hydraulic radius d/z.

Combining Eqs. (Z) and (54) gives

u 0)0 (55)

m

TThis dependence is due to the fact that I m varies as d2poo/pst and the Reynolds
number per unit length, behind the shock, varies as poo/Pst.
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For constant pi., it has been found 1 3 that the interpolation formula

?1u = 3. 20/41 + 0. 543W is accurate. This together with the values of Icc in

Table A-I permits Eq. (55) to be evaluated forconstant pp. The effect

of variable p• on (-u " ICO) , for air, has been determined in Reference 13.

It was found that the variable p• values of (ilu - I O ) for air, can be obtained

from the constant po values by multiplying the latter by (Ce,o)0.48. It may

be assumed that the latter correction for variable pýi is also reasonable for

other gases.

Values of (26u/d)l m have been computed for air and for argon, including the

effect of variable pý±. It was assumed that P = P1 in Eq. (55). The results

are given in Fig. 16. It is seen that, for both argon and air,

(26 u/d), 1,0.7, and 0.4 for M 1. 2, 1. 6, and 2.4, respectively, and

decreases with increase of M
5

The excess mass flow in the boundary layer was previously found by integrations

in which it was assumed that the boundary layer thickness small compared with

d (e. g. , Eq. 6). Since most of this mass flow occurs in the portion of the

boundary layer near the wall, 6u is a conservative criterion for the size of the

boundary layer relative to the tube radius. For laminar boundary layers, the

thin boundary layer assumption is probably valid for M as low as about 1. 6.

This covers the range of M of practical interest in low pressure shock tubes.
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VII. SUMMARY AND CONCLUDING REMARKS

Test time and flow nonuniformity in low pressure shock tubes have been

investigated. It was assumed that the boundary layer was laminar and was

thin relative to the tube diameter.

In the first portion of the study, the asymptotic flow after long times was

considered. Here, the shock and contact surface moved with constant and

equal velocity. The flow between shock and contact surface was steady, in a

shock fixed co-ordinate system, and the separation distance was found. It

was necessary to treat simultaneously the boundary layer development and

the change in free stream conditions external to the boundary layer. A local

similarity boundary layer solution was used which utilized the uniform free

stream solutions given in References 11 to 13. The local similarity solution

should be accurate except for M a near I (where neglect of the pressure5

gradient on the boundary layer profile may become important). The accuracy

of the local similarity solution can be established by more accurate solutions

of the wall boundary layer or, perhaps, by applying the same procedure to

boundary layer problems where the solutions are known. This has not been

attempted.

The asymptotic separation distance yielded values of p which were consid-

erably larger than the previous analytical estimates of Roshko and Hooker,

particularly for moderate M . (As an example, consider y = 7/5, - = 1, and

ppL constant across the boundary layer. Roshko obtained 0. 91 I PR < 1. 5Z,

for 1. 29 < M 8< a), whereas we have obtained 2. Z2 <p 1 <1I. 81 for the same
5 -2

range of Ms.) Test time is proportional to P- . Hence, the previous
analytical estimates for test time are much too large, particularly for

moderate M

The experimental test time data of Duff, Roshko, and Hooker indicated that

the present estimates for pl, are still somewhat low. For argon, they are
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too low by about 35 percent for M = 1.6; ZO percent for M = 4, and
B B

10 percent for 5 < M a <9. They are also about 10 percent low for 5S<M <9

in air. The discrepancy between theory and experiment decreases with

increasing Ms. This trend is to be expected since the local similarity solu-

tion becomes more accurate as M increases. It is also to be expected thats

the analytical estimates for p, should be lower than the experimentally

observed values since mixing and diffusion at the contact surface will tend to

reduce test time (i. e. , increase 1).

In the second portion of the present paper,consideration was not restricted to

the asymptotic flow, and the separation distance was found as a function of

time. In order to make the problem tractable, it was assumed that the shock

moved with uniform velocity and that the flow between the shock and the

contact surface was steady (in shock fixed co-ordinates). Both assumptions

are somewhat in error but should give at least qualitatively correct results.

The variation of separation distance with time, in nondimensional form, was

essentially the same as that obtained by Roshko, except for M near 1. Hence,

the main difference between Roshko's results and the present results is in the

numerical value of p (which is used to nondimensionalize both separation

distance and time).

The shock Mach number varies from an initial value of M to an asymptotic

value Ms, A during the course of the flow in a low pressure shock tube. For

strong shocks, Ms, i nearly equals Ms, A and the assumption of a uniform

shock velocity is valid. For weaker shocks, the question might arise as to

what value of M should be used to correlate experimental test time data or tos

theoretically predict test time. When correlating experimental data, the

locally observed value of M should be used. When predicting test time, the

local value of X = xs/W1m should first be evaluated using either Ms, . or

Ms, A (Eq. 50). If X > 0(10), the local flow will be in the asymptotic flow

condition, and M. = Ms, A' If X <0(0. 1), the local flow is only slightly per-

turbed from the ideal flow, and M = M .. For X = 0(l), the local flow is in

an intermediate condition and a mean value between Ms, i and Ma, A would be

appropriate.
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APPENDIX

BOUNDARY LAYER BEHIND MOVING SHOCK

The results given in References II and 1 are summarized with regard to the

displacement thickness of the boundary layer behind a shock moving with

uniform velocity. It is assumed that y and oy are constant, that pjL is constant

across the boundary layer, and that the free stream is uniform behind the

shock.

These results are then put in a form applicable to the local similarity solution

discussed in the body of the report.

UNIFORM FLOW BEHIND SHOCK

The boundary layer is indicated in Fig. 3. The free stream is uniform and is

the same as that directly behind the shock. Subscript o is used for this flow.

In References I I and 12 a similarity variable n is employed, defined by

u
- /--Ue' L P dy (A-1)

vV w,o

and a stream function fo(o) such that

fo = u/u f (0) = 0 (A-Z)
0 e, o 0

The boundary layer displacement thickness is given by

6*=f [ . 1 --' dy (A-3)

which is negative for the boundary layer behind a moving shock.
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In terms of transformed quantities,

- Pe, o e, o Lim (f 1- e, Ao
PwI 0 w,o0r~o 00P y A4

[(f - TO + Io1o0

EG 0

Equation (A-4) defines (f - 0' I , o' and G . These quantities are of

fundamental importance in determining shock tube test time and can be

evaluated from the numerical results given in References 11 through 13.

Typical values are given in Table A-1 for fluids with constant specific heats,

constant a-, and constant piL. Real gas results for air are given in Table Z.

The boundary layer parameters in Table A-I were obtained as follows. The

quantity (f - t) oo is a function only of W = uw/ue, o and is tabulated in

References II and 1Z. The quantity Ioo is found from
1

-- MZ (W - ) r O -I ro( + 1 -I"I (A- 5)o,e, o sr 0( o r, T e, o

where M = o/a ande, o Ue,o e0

I =fordii I =ford•
Ir, o f 0rd s, o " r

0 0

The quantities Ir,o' 0 s, Io and r (0) are functions of a-, as well as W, and are

defined and evaluated in References I I and 12 for ar = 0. 72. However, for

o- = 1, these quantities become (using Ref. 11)

(ZW - I)(f -f)c + f,(0) (f -
(0) 1 I W I 0 0 OD,0 (A-6)

o0 1 r, o (W -1) s o W - I
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where f"(0) is also a tabulated function of W. Normal shock relations give
0

SM 2
2 e, o - A-a

w 00 =W I (A- 7b)
e,o e,o

where Z = (y + l)/(y - 1) In Eq. (A-7b),it is assumed that T = T . Thew 0o

shock Mach number M is related to W and Z by M2 = W(Z - )I/(Z - W).
5 aEquations (A-7a) and (A-7b), combined with the tabulated results in Refer-

ences 11 and 12, yield the values of I and G in Table A-1.

The constant pýL solutions in References 11 and 12 have been correlated in

Reference 12 by interpolation formulas. The equations

(f - 1)0, 0 = 1. 135(W - I)//Il + 1.022W (A-8a)

f"(0) = -0. 489(W - 1) ý1 + -1.665W (A-8b)

correlate the numerical results in References 11 and I Z to within I percent.

It is also of interest to find an approximate analytic expression for

I, 0o(f - O)eo, 0 This can be readily done for or = I by using Eqs. (A-5)

through (A-8). We find

II00,o0 [1 + 0. 431vf(1 + 1. 665W)(1 + 1. 0Z2W]/(ZW - 1) (A-9a)

O, 0

0.562W I +2.571[ 40(l/W)] (A-9b)
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For strong shocks. Z can be replaced by W in Eq. (A-9b).

BOUNDARY L4YER THEORY FOR LOCAL SIMILARITY SOLUTION

The boundary layer theory for use in the local similarity theory presented

in the body of the report will now be outlined. For simplicity, it is assumed

that a' = 1. The free stream is uniform, with a velocity ue , and the wall has

a velocity u w (Fig. 4). The variable V = ue/ue, 0 is introduced. As before,

W /u/e.o

Expressions for (f - n1) 0 and f"(O) are found by replacing W by W/V in

Eqs. (A-8). The result is

(f - 70) = 1.13 - / +! 0 22VW (A-10a)

f"(o) = -0.489 - I + . 665 VW (A-b)

which is valid for all w. For o' = 1, Eq. (A-5) becomes (since r(O) 1)

I M- 1X' 2) (1.- Ir) + I - T s w A- 11)

where

= (w"- "I) ° (f +f"(O) (f G)O

r (W W.

But M = ue/a = M VYTe7,/Teand T/T = (T /T )(T /T). Also,
e e e ,o0 eoe we w e,o coo e

the flow in the free stream is isentropic so that pe/Pe, o = (P /Pe, 0)Y and

T= (pe /P )' From Eqs. (A-?), 1A-i0), and (A-i), it can then
Te/e,o(P
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be shown that

I OD V WV- I Te,o 10 .431(f o : V F Te, oWW- V T0(V + 1 665W)(V + 1 022W)
eL

T e (A- Ia)

It also follows that

H - I-:T +p (f )I]e = • Pe/e o 1(f - -n)oo+l

1.135W P e ze V(e o - Z

IV + I. Oaa (Te, ') /21+(*o v

+ 0.431 W- VV + 1. 665W VIV + 1.022W]I

(A-13)

To integrate Eq. (16),it is necessary to express H as a function of'. This is

done as follows. For isentropic flow

-e, o

which,with Eq. (8), gives

11 e eo11 e (A-14)

e,-o
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which can be solved by iteration to find M as a function of T. Also, for

isentropic flow

Pe [Zz l + Me o('X/

Pe, o - I + M A-5

e

Finally

V Peue Pe, o =(-) Pe,o (A-16)

(Pe edo Pe Pe

Equations (A- 13) through (A-16) permit H to be found as a function of I" and
e

permit the integration of Eq. (16).

-
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